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Abstract—1In this letter, the application of the supervised
descent method (SDM) for solving controlled-source electro-
magnetic inversion is studied. The descent direction in each
iteration step of the 1-D full-wave inversion (FWI) is learned
from the training data set with certain prior information in
the off-line training and then saved. In the online prediction,
it is directly combined with the measured data and the forward
model to implement the FWI. Compared with the traditional
iterative method, the efficiency is significantly enhanced since
the computation of the Jacobian matrix is circumvented. Both
the synthesized and field-measured grounded electrical-source
airborne transient electromagnetic (GREATEM) data are used
to verify the feasibility and efficiency of SDM. In addition,
the learning ability of the SDM is also studied.

Index Terms— Controlled-source electromagnetics (CSEM),
full-wave inversion (FWI), supervised descent learning.

I. INTRODUCTION

LECTROMAGNETIC (EM) methods play an important

role in the exploration of underground natural resources,
such as water, ores, oil, and gas. The magnetotelluric (MT)
and audio-magnetotelluric (AMT) methods utilizing passive
sources, such as radio atmospherics, can provide underground
conductivity information on the local and regional scales [1].
However, the effective EM signals are unstable and easily
interfered with by noise. Meanwhile, the vertical resolution
also decreases quickly as the exploration depth increases.
The controlled-source electromagnetic (CSEM) is able to
overcome these disadvantages [2] by using large-dimensional
man-made coils or long cables. A typical CSEM system called
the grounded electrical-source airborne transient electromag-
netic (GREATEM) was proposed by Mogi et al. [3]. It uses
a grounded electrical line source with a length of 2-3 km
as the transmitter and a three-component magnetometer in
the towing bird as the detector. The grounded horizontal line
source transmits high-power EM waves that have a stronger
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penetration ability than the waves generated by the dipoles
adopted in a traditional CSEM system [4].

Several deterministic inversion methods have been pro-
posed to reconstruct the underground conductivity from
CSEM data. They mainly include the Occam’s method [5],
Gauss—Newton [6], the Born iterative method (BIM) [7],
distorted BIM (DBIM) [8], and so on. These methods can
accommodate the large dimensions of the model parameters,
which is crucial for 2-D or 3-D inversion problems. However,
because these methods use the objective functions to quan-
tify the mismatches of model parameters or measured data,
time-consuming iterations are inevitable.

The artificial neural network (ANN) that completely dis-
cards the objective function and the iterations is another type
of inversion method and has been successfully applied to the
CSEM data [9]. The ANN is first trained by EM responses
for typical conductive bodies or faults synthesized by the
forward computation model and then used to efficiently predict
the underground anomalies from the measured EM data. The
supervised descent method (SDM) is another type of machine
learning method that fuses the conventional iteration methods
and the supervised learning technique. Specifically speaking,
the machine learning module is embedded inside the iterations
used to minimize the objective function and is to learn the
Jacobian matrix [10]. This is different from the ANN in [9],
which is completely treated as a black-box and must learn the
complex underlying physics of EM scattering. Consequently,
in the SDM, not only the physics of EM scattering remains in
the objective function but also the online prediction becomes
faster since the Jacobian matrix has been computed in the
off-line training.

Previously, the SDM has been applied to the inversion of
MT data [11] and logging-while-drilling data [12]. In this
work, we perform the 1-D full-wave inversion of GREATEM
data by using SDM. The system setups and data preprocessing
of GREATEM have been discussed in [7] and [8]. This letter
will focus on the implementation of SDM for GREATEM
data and the comparison between SDM and the conventional
DBIM. In Section II, the forward model, DBIM, and SDM
are briefly introduced. In Sections III and IV, synthesized and
field-measured data are respectively inverted by SDM to verify
its feasibility and effectiveness. Finally, conclusions are drawn
in Section V.

II. METHOD

A. Forward and Inversion Models

Fig. 1 shows the GREATEM survey of 1-D horizontal
layered underground structure. The EM responses at the
receiver coil excited by the y-directional cable positioned
in y = [-] [] and placed on the Earth surface can be
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Fig. 1.  Geometry for the GREATEM survey of the 1-D underground

structure.

obtained by [8], [13]
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where k, is the wavenumber in the p direction. 1 and
Vi represent the equivalent current and voltage, and their
definitions are given in [13]. Jy and J; are the Bessel functions.
p+ and p_ are the horizontal distances from two ends of the
line source to the receiver coil. The magnetic fields in (1)
are actually computed by decomposing the spherical EM
waves excited by the line source into a series of plane waves,
evaluating the reflection and transmission coefficients for each
component and, finally, implementing the integration in the
spectral domain.

In the 1-D inversion, the model parameters of conductivities
can be solved by DBIM. Details can be found in our previous
work [8]. The DBIM is time-consuming since the Jacobian
matrix (also called the Fréchet derivative matrix) must be
updated in each iteration. Fortunately, this can be judiciously
circumvented by SDM.

B. Supervised Descent Method

EM inversion is to seek the optimized model parameters by
minimizing the data misfit between simulated data F(m) and
measured data d™**

S(m) = |[F(m) — ™| (2)

where F represents the forward modeling operator and |||
denotes the L,-norm. m is the model parameter vector that
contains the conductivities and layer positions. d™* is the
data vector that includes the measured magnetic fields at the
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receiver array. By applying the Taylor expansion to the misfit
S atm = mp + Am and minimizing it with respect to Am,
we can easily obtain the perturbation quantity [10]

Am = K(F(mo) — ™) 3)

where K = —2Hg'J% represents the descent direction. It is
obvious that the computation of K is time-consuming since
it contains the Hessian matrix Hg of the data misfit and
the transpose of the Jacobian matrix Jr. In SDM, K is
trained offline by learning a linear regression between Am
and F(mg) — d™.

There are two strategies to reconstruct the model parameters
from GREATEM data. One is the model-based for which both
the layer boundary position and conductivity in each layer are
reconstructed. The total layer number is usually fixed in the
inversion although the layer boundary positions are allowed
to change randomly. Another one is the pixel-based method.
Each underground layer is divided into many thin layers.
The conductivities in all the thin layers are reconstructed
simultaneously. There is no requirement for the total layer
number. The cost function in the kth iteration for SDM is
constructed as [10]

o = |[AC], ALy] — ADPKT |1 4
for the model-based strategy, and
®f = |AC] — ADJK{" |7 ®)

for the pixel-based strategy. C" and C” denote the conduc-
tivity model parameter matrices used in the training for the
model-based inversion and pixel-based inversion, respectively.
The model parameter matrix L. and the data matrix D include
the layer boundary positions and measured data, respectively.
These four matrices have the dimensions of N x M,,, N x M,,,
N x L, and N x R, respectively. N is the number of the
training set, M,, and M, are the dimensions of unknown
conductivity vectors in the model- and pixel-based inversion,
respectively, L is the unknown layer position number, and R is
the dimension of the measured data vector. The superscript T
denotes the matrix transpose. The subscript F is the Frobenius
norm, and A denotes the difference between true values and
obtained values in the kth training step.

In the kth step of off-line training, the model parameters are
input into the forward model to compute the field values at the
receiver array. Then, the descent matrix K; can be evaluated
by minimizing (4) or (5). It is

K = (AD}TAD! + 1)~ - (ADT[ACY, AL])  (6)

for the model-based inversion, and
-1
K/ = (AD["AD] +71) - (AD!"AC)) %)

for the pixel-based inversion. The parameter y is the reg-
ularization factor used to facilitate the matrix inverse. It is
determined by computing the mean value of all elements of
ADT AD and dividing it with an empirical number, e.g., 100.
The training will continue until the maximum number of
iterations is reached, or the model and data misfits [10] are
small enough. When the training terminates, the matrix K
obtained in each step is saved. The flowchart of this learning
process can be referred to [12].
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TABLE I
MODEL PARAMETERS USED FOR TRAINING AND TESTING

m, m; my ms my mg
o1 4~8 7.7 2 72 120 1
o) 10~40 31 80 22 72 1
o3 100~400 250 600 300 600 1
Z, 100~150 123 133 61 61 125
Z3 300~400 378 337 266 266 350

I The unit of o is mS/m; the unit of Z is meter.

2 m, denotes the model parameters used in training; my,
mgo, m3, and my are four sets of true model parameters
for testing; mo denotes the initial value.

In the kth step of online prediction, the unknown parameter
is updated by

my; = my + Ky Ady
Ady = d™* — dy

(8a)
(8b)

where the model parameter vector m is the combination
[see (4) and (5)] of conductivities and layer boundary positions
in the model-based inversion and only the conductivity values
of all the thin layers in the pixel-based inversion. In addition,
one should note that the initial model mg should be the same
in the training and prediction.

III. NUMERICAL RESULTS

In this section, we apply the SDM to both model- and
pixel-based inversions to validate its feasibility for GREATEM
data. We also test the computational cost advantage of SDM
over the conventional DBIM. Finally, the learning ability of
SDM is studied. All the measured data are synthesized by
the forward modeling algorithm. Both training and prediction
are performed on a workstation with 48-core Xeon E5 2697
2.7G CPU, 512-GB RAM. The line source with the length
of 2 km is placed in the jy-direction. The receiver array,
including 201 receivers with the interval of 20 m, is orthogonal
to the line source and placed 175 m above the ground. The
frequencies used in the inversion are 20, 80, 160, and 300 Hz.
Thus, the measured data vector has the dimension of 2412.
In addition, in order to quantitatively evaluate the inversion
error, we define the model misfits for conductivity and layer
boundary positions as

_ I log(m;"") — log(mg“e) I

- (9a)
[ log (muue) |
i — mive|
err, = (9b)
- [

where m™ is the inverted model vector containing the con-
ductivity values in all layers, while m;"™ is the inverted model

vector containing the layer positions.

A. Applying SDM to GREATEM Data

It is assumed that there are three underground layers, and
100 random models are used to train the descent matrix K.
The ranges of the model parameters in the training are listed
in Table I where o1, 0, and o3 are conductivities from the first
layer to the third layer, and Z, and Z3 are the lower boundaries
of the first and second underground layers, respectively. In the
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Fig. 2. Variations of (a) data misfits and (b) model misfits in the off-line
training for two different inversion methods.
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Fig. 3. Online prediction results for four models m;—my4 whose true model
parameters are listed in Table I. (a) Both conductivities and layer positions
within the training ranges. (b) Conductivities outside the training ranges but
positions within the training ranges. (c) Conductivities within the training
ranges but positions outside the training ranges. (d) Both conductivities and
layer positions outside the training ranges.

pixel-based inversion, three underground layers are divided
into 45 thin layers, and the lower boundaries of the first
and second underground layers also randomly change in the
ranges listed in Table I.

As shown in Fig. 2, both model- and pixel-based train-
ing methods have fast convergence speeds, all converging
within ten steps. However, the iteration speed is different.
The model-based method takes 16 min in one step, while
the pixel-based takes 37 min. The reason is that the sizes of
matrices K in the two methods are different. It is 2412 x 7
in the model-based method but 2412 x 46 in the pixel-based
method.

In the online prediction, we use the descent direction
obtained in the off-line training to reconstruct the model
parameters of the underground structure. The true model
parameters for four tests are listed in Table I. As shown
in Fig. 3(a), when the unknown layer positions and conductiv-
ities are both within the ranges of model parameters used in
the training, both the model-based and pixel-based methods
can reconstruct the underground structures well. However,
the model-based method slightly outperforms the pixel-based
for the reconstruction of sharp layer boundaries. When the
conductivities are out the ranges of model parameters used in
training, but the layer positions keep inside, the reconstruction
error of conductivities is larger than that of layer positions,
which is shown in Fig. 3(b). By contrast, as shown in Fig. 3(c),
when the conductivities are inside the ranges, but the layer
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Fig. 4. Comparisons of inversion by SDM and DBIM. The synthetic

measured data are contaminated by a 20-dB Gaussian white noise. (a) Con-
ductivities within the training ranges. (b) Conductivities outside the training
ranges.

positions are outside the ranges, the reconstruction error of
conductivities is smaller than that of layer positions. However,
it is noted that the conductivity and layer position have
interaction for the SDM inversion. In other words, when one
kind of model parameter exceeds the range in the training,
the other one also cannot be well reconstructed. They couple
with each other through the descent matrix K. When both
the conductivities and layer positions are outside the training
ranges, the reconstruction fails, as shown in Fig. 3(d).

B. Comparison With DBIM Inversion

We then compare the inversion by SDM and the conven-
tional DBIM. We use the regularization strategy given in [14]
for DBIM inversion. The measured data are synthesized by
the forward solver with 20-dB Gaussian white noise added.
Here, the noise level is defined according to the signal-
to-noise ratio (SNR) of power. Since only the conductivity is
reconstructed by DBIM in our previous work [8], we redesign
the training model of SDM using the model-based inversion
method in which there are five underground layers with their
positions fixed. In the 200 training samples, the conductivity
ranges between 1-50, 10-50, 100-500, 1-5, and 10-50 mS/m
from the first to the fifth layer. As shown in Fig. 4, when
the true conductivity values in all layers fall within the ranges
of model parameters used in the training, SDM outperforms
DBIM for the more accurate reconstruction in the deeper
layers. The mean err, is 4.1% for the fourth and fifth layers in
the SDM inversion but is 19.9% in the DBIM inversion. This
obvious superiority of SDM for the reconstruction of deeper
layers may be due to its strong adaptability to all kinds of
noisy field data and underground layer configurations, which
has been obtained in the training stage. However, when the true
conductivities are outside the ranges, DBIM shows stronger
adaptability. Another obvious difference is the computation
time spent for the inversion. In each iteration step, SDM only
needs 20 s, but the DBIM consumes around 30 min. This
is because the descent matrix K has been computed in the
off-line training of SDM and saved, but the Fréchet derivative
matrix must be updated in each iteration of DBIM. One should
note that the inversion time spent by SDM does not include
the off-line training time.

C. Study of the Learning Ability

As discussed in Section III-B, SDM outperforms DBIM
when proper prior information, e.g., the underground layer
number and conductivity ranges, is incorporated into the
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Fig. 5. (a) Three-layer model is included in the initial training data set.
(b) Five-layer model is not included in the initial training data set.

training model. Unfortunately, these prior parameters are
unavailable in many practical measurements. One solution is
to diversify the training models. For example, in the beginning,
we design 200 training samples and incorporate two-, three-,
and four-layer models into them although the true underground
structure only has three layers. The conductivity values range
between 1 and 50 mS/m and the layer boundary positions
change from 37 to 412 m in the training samples. The
1-D conductivity distribution obtained in the first inversion is
shown in Fig. 5(a). Then, based on this preliminary result,
we intuitively guess that the underground structure has three
layers and, thus, redesign the training data set with only the
three-layer model. After the off-line training is accomplished,
the online prediction in the second inversion gives an under-
ground structure close to the true model, as shown in Fig. 5(a).
Then, we use the same training data set but change the real
underground structure to five layers. The first inversion result
in the SDM prediction is shown in Fig. 5(b). We can see that
the five-layer structure still can be approximately reconstructed
although it is not included in the training data set. Then,
we redesign the training data set with only the five-layer
model and perform the second inversion. The reconstructed
underground structure is close to the true model, as shown
in Fig. 5(b). The above analysis shows that SDM can still
reconstruct the basic outline of the underground structure in
the absence of prior information. It incorporates composite
training models into its training data set and obtains the
preliminary inversion result. Based on this, the training data
set is updated to perform the prediction again to acquire a
more accurate result. Therefore, SDM has a strong learning
ability and adapts to multiple underground structures in the
GREATEM measurements.

IV. INVERSION OF FIELD-MEASURED DATA

In January 2016, the Changyi City in Shandong province of
China was surveyed by a GREATEM system. The transmitter
cable has a length of 2768 m, and a helicopter that moved
in several flight lines with vertical heights of 115 m was
used to collect the magnetic field data. The details of the
measurements and the data preprocessing procedure were
discussed in our previous work [8]. Here, we apply SDM to
the measured data in the flight line C (see Fig. 11 of [8])
and compare the inversion result with that obtained by DBIM.
We pick nine measurement points in flight line C, which are
around 600-1700 m from the transmitter cable. The interval
between the two measurement points is 120 m. In each point,
ten frequencies, including 12, 19, 28, 41, 62, 91, 135, 200,
296, and 438 Hz, are used in the inversion. We apply the
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SDM and DBIM to the Z component of the magnetic field
data in each measurement point and integrate the 1-D profiles
into a 2-D inversion diagram, as shown in Fig. 6. It should
be noted that the pixel-based strategy is adopted, and the
underground structure is divided into 45 thin layers. The
conductivity values in the training vary from 0.1 to 0.4 S/m.
The SDM results match the DBIM results well. It is shown
that a high conductivity layer appears within 50 m below the
Earth surface. In addition, at the depth of 100-150 m, another
high conductivity band shows up. This is roughly consistent
with the drilling data in this area. Just beneath the surface is
the quaternary containing high conductivity material, which is
followed by shale. Then, below the shale is a strip of iron ore
that is followed by a thick granite layer.

Fig. 7 shows the final data misfits between computed and
measured magnetic fields. Two observations are made: 1) the
data misfits increase as the distance between the measurement
point and the transmitter cable increases; this is because the
SNR decreases as the distance increases and 2) SDM inversion
has larger final data misfits than those of DBIM. Because no
accurate prior information of the conductivity ranges of the
underground structure is incorporated into the training data
set of SDM, its adaptability to field-measured data is weaker
than that of DBIM.
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V. CONCLUSION

In this work, for the first time, SDM is applied to the inver-
sion of semiairborne EM data. Compared with the conven-
tional DBIM, SDM has the advantage of lower computational
cost, supposing that proper prior information is incorporated
into the training data set. It is due to the fact that the descent
matrix in each iteration step of SDM has been computed and
saved in the off-line training stage. However, when the prior
information of the conductivity ranges of the underground
structure is absent in the training, the adaptability of SDM
is weaker than that of DBIM.

Numerical simulations show that SDM has a strong learning
ability. When no prior information regarding the underground
structure is available, SDM can still obtain reliable inversion
results by incorporating composite training models and then
refine them according to the preliminary prediction results.
In addition, field-measured GREATEM data also verify the
feasibility of SDM application to CSEM inversion.
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